Homework II

Due Date: 22/03/2024
Exercise 1. Find the Green's functions to the Poisson equation with Dirichelt boundary condition in each of the following domains Ω.
(i) (1 point) $\Omega=\{(x, y, z): x>0, y>0, z>0\}$.
(ii) (1 point) $\Omega=\left\{(x, y, z): x^{2}+y^{2}+z^{2}<R^{2}, x>0, y>0, z>0\right\}$.

Exercise 2. Consider the following problems.
(i) (1 point) Solve

$$
\left\{\begin{aligned}
\partial_{t} u-\partial_{x}^{2} u & =3 t^{2}, \quad t>0, x \in \mathbb{R} \\
u(0, x) & =\sin x, \quad x \in \mathbb{R}
\end{aligned}\right.
$$

(ii) (1 point) Solve

$$
\left\{\begin{aligned}
\partial_{t} u-\partial_{x}^{2} u=0, & t>0, x>0 \\
u(0, x)=0, & x>0 \\
u(t, 0)=1, & t>0
\end{aligned}\right.
$$

Exercise 3. We say $v \in C^{2}(\bar{\Omega})$ is subharmonic if

$$
-\Delta v \leq 0, \quad x \in \Omega
$$

(i) (1 point) Prove for a subharmonic v that

$$
v(x) \leq \frac{1}{\left|B_{r}\right|} \int_{B_{r}(x)} v(y) d y
$$

for all $B_{r}(x) \subset U$.
(ii) (1 point) Prove that

$$
\max _{\bar{U}} v=\max _{\partial U} v
$$

(iii) (1 point) Assume $\Omega=\left\{(x, y): x^{2}+y^{2}<1\right\}$ and $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a classical solution of the Dirichlet boundary problem

$$
\begin{aligned}
-\Delta u & =-x^{2}, \quad x \in \Omega \\
u & =x^{2}+y^{2}-5 x y+2, \quad x \in \partial \Omega
\end{aligned}
$$

Calculate the maximal value of u in Ω.
Exercise 4. We say $v \in C^{1,2}((0, T) \times \Omega)$ is a subsolution of the heat equation if

$$
\partial_{t} v-\Delta v \leq 0, \quad x \in(0, T) \times \Omega
$$

(i) (1 point) Prove for a subsolution v that

$$
v(t, x) \leq \frac{1}{4 r^{n}} \iint_{E_{r}(t, x)} v(s, y) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s
$$

for all $E_{r}(t, x):=\left\{(s, y) \in \mathbb{R}_{+} \times \mathbb{R}^{n}: s \leq t, \Gamma(t-s, x-y) \geq \frac{1}{r^{n}}\right\} \subset(0, T] \times \Omega$, where $\Gamma(t-s, x-y)$ is the fundamental solution of the heat equation.
(ii) (1 point) Prove that

$$
\max _{[0, T] \times \bar{\Omega}} v=\max _{[0, T] \times \bar{\Omega} /(0, T] \times \Omega} v
$$

(iii) (1 point) Assume $u \in C^{1,2}((0, \infty) \times(0,1))$ is a classical solution of the Dirichlet boundary problem

$$
\begin{gathered}
\partial_{t} u-\partial_{x}^{2} u=-x^{2}, \quad t>0,0<x<1 \\
u(0, x)=\sin \pi x, \quad 0<x<1 \\
u(t, 0)=2 t e^{1-t}, u(t, 1)=1-\cos \pi t, \quad t>0 .
\end{gathered}
$$

Calculate the maximal value of u in $[0,1] \times[0,1]$.

